If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-16g+24=0
a = 1; b = -16; c = +24;
Δ = b2-4ac
Δ = -162-4·1·24
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{10}}{2*1}=\frac{16-4\sqrt{10}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{10}}{2*1}=\frac{16+4\sqrt{10}}{2} $
| 17x-5=3x+2 | | 72-3y=5y | | 9x=5x-400 | | 8m-3=5m+3 | | -9c-18=882 | | 7a+14=-42 | | -5y-9=116 | | 3x-5(x-5)=-9+3x+14 | | 2x=(5x-30) | | 12t+-17t−-4t−20t−-17t=-20 | | -41(c-14)+34=35c+21 | | -3(w-5)=-21 | | 3x+31=79 | | 5(2z-2)=30 | | 15=x2+4 | | 12-(x+5)=7x-2 | | 0.08x+(-0.08)+0.54=0.12x+(-0.08x)+0.36 | | 9a-8=-10 | | b=1 | | 7x^2=48+50 | | 5g+9=-21 | | 6.6=w–1.2 | | 6x-11-3x+7=0 | | 2x+6=12-3x | | 0.08x+0.54=0.12x+0.36 | | ×/y=3/7/9/14 | | 3y^-3÷2=81 | | 8n−7n=7 | | 10+(-x)=-34+(-5x) | | -8=x=39 | | 59.x/5=-3 | | x*7/15=420 |